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ABSTRACT 

It is shown that the isomorphy classes of the ideals of a valuation domain 

form a Clifford semigroup, and the structure of this semigroup is inves- 

tigated. The group constituents of this Clifford semigroup are exactly 

the quotients of totally ordered complete abelian groups, modulo dense 

subgroups. A characterization of these groups is obtained, and some real- 

ization results are proved when the skeleton of the totally ordered group 

is given. 

Introduct ion  

Let R be a commutat ive domain, with quotient field Q r R. The set $ ' (R) of the 

non-zero fractional ideals of R is a commutat ive semigroup under multiplication, 

with R as unit. ~-(R) contains the subgroups 27(R) _> 79(R) consisting, respec- 

tively, of the invertible fractional ideals and of the non-zero principal fractional 

ideals. 

The factor group C(R) = I(R)/7)(R) is the class group of R; it can be viewed as 

the group of the isomorphy classes of the invertible ideals of R, with multiplication 

induced by multiplication of ideals. If R is a Dedekind domain, it is one of the 

main objects of investigation in algebraic number theory; in this case 2"(R) = 

5r(R). Groups related to domains R, obtained by generalizing the class group 

C(R) in various ways, have been investigated. 
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The factor semigroup S(R) = .T'(R)/7)(R) can be viewed as the semigroup 

of the isomorphy classes of non-zero (integral) ideals of R, with multiplication 

induced by multiplication of ideals: $(R)  = {[I]: 0 < I _< R}, [I][g] -- [I J]. We 

call $ (R)  the class s e m i g r o u p  of R. 

The class semigroup S(R) has not received as much attention as the class group 

even for simple classes of domains, probably because the semigroup structure is 

much less attractive than the group structure. However, there are some types of 

commutative semigroups whose structure is so simple and so close to the group 

structure that it is natural to look for domains R whose class semigroup S(R) is 

of that  type. For example, semigroups which are close to groups are the Clifford 

semigroups: these are disjoint unions of groups. 

The first goal of this paper is to investigate the class semigroup of a valuation 

domain R. After a preliminary section where we collect basic results on commu- 

tative semigroups and ideals of valuation domains, we will prove, in the second 

section, that the class semigroup S(R) of a valuation domain R is a Clifford 

semigroup satisfying particular properties, and provide some examples of class 

semigroups of valuation domains. 

It is worth remarking that  the class semigroup S(R) of the valuation domain 

R is determined by the value group F(R), and gives much less information on 

the ring R than F(R) itself. As a matter  of fact, two valuation domains with 

very different value groups - -  even with different prime spectra - -  can have 

isomorphic class semigroups, as we shall see by some examples. Thus our paper 

mainly addresses the structure of a totally ordered abelian group F; one can 

define the semigroup S(F) associated with F as the set of equivalence classes of 

proper filters in F (called classes sup~r i eu re s  by Ribenboim [R]), with respect 

to the equivalence relation ~ defined by setting: F1 ~ F2 if F1 = "y + F2 for 

some 7 E F (Fi filters in F). All the results on the class semigroup S(R) can be 

phrased in terms of the semigroup $(F).  

In the third section, we achieve the second aim of the paper: a characterization 

of abelian groups that can be group constituents of S(R). They are associated 

with the idempotent non-zero prime ideals L of R; the group associated with 

such an ideal L, denoted by GL, is isomorphic to FL/['L (where ['L is the value 

group of the localization RL of R at the prime ideal L) and rL is its completion 

in the order topology. First, a coarse characterization of the groups GL, which 

disregards the rest of the structure of F, is given; then some realization results 
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for these groups are obtained when the skeleton of F is fixed. Classical results 

on algebraically compact and cotorsion abelian groups play a fundamental role 

in this section, as well as N6beling's celebrated solution of the Specker problem 

IN] and its generalization given by Kaup and Keane INK]. 

The characterization of the groups GL obtained here is also interesting in view 

of the results in [BFS]; these groups appear in that paper as building blocks of 

the Clifford semigroup Unis g of the isomorphy classes of the uniserial R-modules 

U of type [K/I] and U# = I # = L (for these notions and notation we refer to 

the paper [BFS]). 

Finally, we would like to mention that Zanardo and Zannier [ZZ] investigate 

the Clifford semigroup ,S(R) for certain domains R, in particular for orders in al- 

gebraic number rings. The results in the present paper and in Zanardo Zannier's 

paper raise the question of characterizing Priifer domains R such that S(R)  is a 

Clifford semigroup. 

We are indebted to Adalberto Orsatti and Paolo Zanardo for helpful discus- 

sions. 

1. Pre l iminar ie s  

For notions and results of classical abelian group theory used later on we refer 

to the books by Fuchs IF2] and Orsatti [O]. We will just recall here some basic 

facts concerning commutative semigroups and ideals of valuation domains. 

1.1 COMMUTATIVE SEMIGROUPS. Let ,S be a commutative (multiplicative) 

semigroup with 1. Consider the subsemigroup of the idempotent elements 

Id($) = {e E S: e = e2}. 

It is well known that Id($) is a A-semilattice under multiplication. Consider now 

the subsemigroup of S consisting of the yon Neumann regular elements 

Reg($) = {a E S: a = axa, 3x E S}; 

Reg(S) is a Clifford semigroup, since it is the disjoint union of the family of 

groups {G~}~eld(S) indexed by the idempotents, where 

G~ = {ae: abe = e, ~b E S},  
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and it is the maximal group in S containing the idempotent e. If e _< f are 

idempotents (i.e. e f  = e), then the multiplication by e induces a group homo- 

morphism r G S ~ G~, which is called the b o n d i n g  h o m o m o r p h i s m  between 

GI and Ge. Notice that G1 is the subgroup of $ consisting of the invertible ele- 

ments. Obviously S is a Clifford semigroup if and only if S = Reg(S). 

If one considers the equivalence relation ~ on S defined by setting: a ~ b 

iff Sa = Sb, then all elements which are equivalent to an element a E Reg(S) 

are contained in Reg(S), and there exists an idempotent e (namely e = ax, if 

a = axa) such that  the equivalence class of a coincides with G~. 

1.2 IDEALS OF VALUATION DOMAINS. Let R be a valuation domain with quo- 

tient field Q ~t R and maximal ideal P. Given a fractional ideal I of R, let 

1-1 = {q E Q: qI < R},  and let I # = { r  E R ; r I < I } = U { q I : q E  Q, qI < R} 

be the prime ideal associated with I (see [FS, page 15]). It is well known that 

I # = P if I --- R, and I # = I1-1 if I 7 R; moreover, I is a fractional ideal of 

R I , ,  the localization of R at I #, hence I R I ,  = I. If I ~- RL for some prime 

ideal L, then necessarily L = I #. 

LEMMA 1: Let I be a fractional ideal o f  R. The following hold: 

(1) i f I  ~- RI# ,  then I1-1 = RI~ and I I  # "~ I # ;  

(2) i f  I ~ R t# ,  then I1-1 = I # and I I  # = I. 

Proof: See Lemma 1.1 in [BFS]. I 

The groups in S ( R )  associated with the idempotent classes [RL], for 0 ~t L a 

prime ideal, and ILl, for 0 ~t L --- L 2 an idempotent prime ideal, will be simply 

denoted respectively by GRL and GL. This notation is justified by the fact that 

two different prime ideals are not isomorphic, neither are their localizations. 

The next result gives a characterization of GL; recall that  L = L 2 is equivalent 

to L ~ RL (see [FS, 1.4.8]). 

LEMMA 2: Let 0 ~t L = L 2 be an idempotent prime ideal of  R. Then the 

subgroup GL o r S ( R )  consists of  the isomorphy classes [I] of ideals I such that 

I # = L and I ~ RL. 

Proof: [I] E GL iff I -~ H L  for an ideal H and there exists a fractional ideal 

J such that I J L  = L; since ( I J L )  # = I # M .1# n L # by [BFS, Lemma 1.2], 

and L # = L by [FS, 1.4.5], the equality I J L  = L implies that I # _> L. Since 
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I # = H # n L, it follows tha t  I # = L. I ~- RL implies H L  ~- RL hence L ~- RL, 

which contradic ts  L = L ~, therefore I ~ RL. 

Conversely, if I # = L and I ~ RL, then I1-1 = L, by L e m m a  1, hence 

I J L  = L for J = 1-1,  so tha t  [I] �9 GL. | 

The  group GL is defined in [BFS] by means  of the character izat ion given in 

L e m m a  2. 

2. C l a s s  s e m i g r o u p s  o f  v a l u a t i o n  d o m a i n s  

In this section R always denotes  a valuat ion domain.  The  main  goal is to prove 

the following theorem concerning the s t ruc ture  of the class semigroup S(R) .  Note 

tha t ,  if L > L '  are two pr ime ideals, then in S ( R )  we have: [RL] >_ ILl > [RL,] >_ 

[L']. 

THEOREM 3: Let R be a valuation domain. Then: 

(1) the A-semilattice I d (S (R) )  of the idempotents o r S ( R )  consists of the iso- 

morphy classes [RL] of the localizations of R at non-zero prime ideals L 

and of  the isomorphy classes ILl of the idempotent non-zero prime ideals 

L = L2; moreover, I d ( S ( R ) )  is totally ordered; 

(2) the groups GRt. associated with the idempotent [RL] is trivial, for all non- 

zero prime ideals L; i f  L = L 2 is non-zero, the group GL associated with 

the idempotent [L] is isomorphic tO FL/FL,  where FL is the value group of 

RL and FL is its completion in the order topology; 

(3) S(  R) is a Clifford semigroup and the bonding homomorphisms between its 

group constituents are all trivial. 

Proo f  (1) If ei ther [I] = [RL] for a pr ime ideal L, or [I] = [L] for an idempoten t  

p r ime ideal L = L 2, then  [I] is obviously idempotent .  Conversely, let [I] = [I 2] 

be an idempoten t  in S (R) ,  where I _< R. Then  there exists an a E R such tha t  

aI  = 12. If I ~- RL (in which case necessarily L = I # ) ,  then we are done. If 

I ~ R/•,  then, by L e m m a  1, aI  # = a l I  -1 = I2 I  -1 = I I  # = I,  hence [I] = ILl 

for L = I #. To conclude, it is enough to recall t ha t  L ~- RL if and only if L > L 2. 

Concerning the to ta l  order on Id (S (R) ) ,  note tha t  [RL] >_ [L] is ei ther a str ict  

inequal i ty  or an equal i ty depending on the fact tha t  L = L 2 or L > L2; L ~ RL, 

and LRL, -= RL,. 

(2) Recall  tha t  

GRL = {[IRL]: I J R L  = RL, 35 �9 ~-(R)}. 
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I J R L  = RL obviously implies IRL  ~- RL, hence the first claim holds. The proof 

that,  if L = L 2, then GL is isomorphic t o  FL/FL,  is in [BFS, Proposition 6.3] 

(where the characterization of GL given in Lemma 2 is used). 

(3) If [I] -- [1] 2, then [I] is trivially a regular element of S(R) .  If [I] ~t [1] 2, 

then I ~ RI# ,  therefore I1-1 = I #, hence I21-1 = I I  # = I, by Lemma 1, so 

[I] = [I][I-1][I] is regular. Therefore S(R)  is a Clifford semigroup. The bonding 

homomorphisms from GRL are obviously trivial, since GRL itself is trivial. Given 

two prime ideals L > L ~, the bonding homomorphism from GL to C, RL, is also 

trivial, since GRL, is trivial. I[ 

Recall that FL = F(RL) is isomorphic to F/E,  where F = F(R) is the value 

group of R and E is the convex subgroup associated with the prime ideal L of R. 

In order not to exclude the prime ideal {0} from our consideration, we can 

adjoin to the class semigroup S (R)  two more elements, namely [{0}] and [Q] = 

[R{0t]; the multiplication is extended in the obvious way: if [I] �9 S(R) ,  then 

[{0}][I] = [{0}]; [Q][I] = [Q]; [{0}][Q ] = [{0}]. 

The two new elements are idempotents with trivial associated groups G{0} and 

GQ. The e x t e n d e d  class s emig roup  $*(R) = S(R)  u [{0}] U [Q] is still a 

Clifford semigroup, with [I] > [Q] > [{0}] for all [I] �9 S(R) .  

In the rest of this section we will describe some properties of the class semigroup 

of a valuation domain. 

COROLLARY 4: The extended class semigroup S*(R) of a valuation domain R 

has the following properties: 

(1) if  the maximal subgroup Ge containing the idempotent e is non-trivial, then 

e has an immediate successor e + and G~+ is trivial; 

(2) Id(S* (R)) is order complete; 

(3) i f  an idempotent is the supremum of strictly smaller idempotents, then it 

has an immediate successor e + and de+ is trivial. 

Proof  (1) Theorem 3 shows that Ge is non-trivial only if e = [L], where L = L 2 

is an idempotent non-zero prime ideal of R. In this case e has e + = [RL] as an 

immediate successor, and GRL is trivial; 

(2) the intersection and the union of prime ideals are prime ideals, so the 

supremum and the infimum of idempotents associated with a family of prime 
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ideals {L~},el coincide respectively with [RL], where L = ALi ,  and [L'], where 

L' = ~J L~; 

(3) if e = sup~c I ei, with e > ei for all i, then e is necessarily of the form ILl, 

for L an idempotent prime ideal, union of strictly smaller prime ideals, hence e 

has e + = [RL] as immediate successor. | 

The following result describes the structure of the groups GL under certain 

hypotheses. 

PROPOSITION 5: Let L be an idempotent prime ideal of a valuation domain R. 

Then: 

(I) i f  there exists a maximum prime ideal L' properly contained in L, then G L 

is isomorphic to R/A, the factor group of the additive group ]~ of the reals 

modulo a dense subgroup A; 

(2) i f  L is the countable union of  smaller prime ideals, then GL is a cotorsion 

group. 

Proo f  (1) The proof is already sketched in [BFS]: owing to (2) in Theorem 

3, FL has a minimal non-zero convex subgroup isomorphic to a dense subgroup 

A of the additive group of the reals, and f fL/FL is canonically isomorphic to 

A / A  = R/A (one could also nse the isomorphism FL ~ (FL/A) G R, proved in 

[R, page 27], which however uses the incorrect isomorphism FL -~ (FL/A) @ A). 

(2) In view of the correspondence between prime ideals of RL and convex 

subgroups of FL (see [FS, 1.3]), there is a countable descending chain of convex 

(hence pure) subgroups of FL 

FL --Fo_DFI _DF2 _D..._DFn _D... 

such that N(F.~: n �9 w} -- (0}. In [DO] it is shown that the map 

r YI r .  ~ FL 
n e w  

defined by setting: r = E,~e~7, (7.~ �9 Fn), induces an epimorphism 

from l-Ine~ Fn/{~),,e.~ Fn onto the group FL/FL; hence FL/FL is cotorsion, since 

it is a quotient of the algebraically compact group l-I.~e~ F,~/(~),~e~ F,~ (see [H]). 
| 

It is not difficult to construct an example of a valuation domain R containing 

a non-zero idempotent prime ideal L such that GL is not algebraically compact: 
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see the first example in the following series of examples of class semigroups of 

valuation domains. We will use the following notation: if A is a totally ordered 

abelian group and ~ is a cardinal number, then A ~ denotes the direct product to- 

tally ordered by the lexicographic order, and A <~ denotes its subgroup consisting 

of the elements with support of cardinality strictly smaller than a. 

Examples: (1) Let Z ~1 be totally ordered by the lexicographic order; Z ~1 is 

complete in the order topology and Z <~ is dense in it. The quotient Z ~1/Z <~1 

is Rl-free (i.e. every countable subgroup is free, see [EM, Exercise 11, page 113]), 

cotorsionfree (see [D]), and it has no free summands, since Homz(Z ~1/Z <~1 , Z) = 

0 by [L]. If R is a valuation domain with F(R) -- Z <~1 and P as maximal ideal, 

then Gp is not cotorsion. 

(2) A valuation domain R is discrete of rank one (rank--Krull dimension) if 

and only if S(R) is the trivial group. 

(3) Let R be a rank one non-discrete valuation domain. Then S(R) consists of 

two groups: GR, which is trivial, and Gp, which is trivial if and only if F(R) is 

order isomorphic to R. In the case F(R) ~ R, then Gp is isomorphic to R/A,  for 

A a dense subgroup of R, by Proposition 5. In particular, since any subgroup of R 

can be realized as F(R) for some R, Gp can be any divisible group of cardinality 

at most 2 s~ 

(4) Let R be a valuation domain of finite Krull dimension equal to n. If R is 

discrete, namely if F(R) is isomorphic to a direct sum of n copies of Z under the 

lexicographic order (equivalently, no non-zero prime ideal is idempotent), then 

S(R) consists of n trivial groups, associated with the localizations of R at the 

non-zero prime ideals. If R is not discrete, then S(R) contains also the groups GL 
corresponding to the idempotent non-zero prime ideals L; GL is trivial or isomor- 

phic to a proper quotient of R, depending on the completeness or incompleteness 

of r(RL). 
(5) The Clifford semigroup S consisting of 2n (n > 1) trivial groups with 

the total order is isomorphic to the class semigroup both of a discrete valuation 

domain of rank 2n, and of a valuation domain of rank n such that every prime 

ideal L is idempotent and F(RL) is complete. 

(6) Let F be an indecomposable abelian group, which is an extension of Zp by 

Q (see for instance [K, Theorem 19]). Let F be totally ordered in such a way 

that  Zp is a convex subgroup. Then I' gives rise to the same Clifford semigroup 

as F' = Zp {~)Q lexicographicaUy ordered. There are no embeddings (even not 
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order preserving) from F to F'; this example shows that the generalization of the 

Hahn embedding theorem to "regular" totally ordered abelian groups given in 

[R, Theorem 3] is not correct. 

(7) Let R be a totally branched discrete valuation domain, i.e. a domain such 

that SpecR is well ordered by the opposite inclusion and every non-zero prime 

ideal is not idempotent. ,S(R) is the well ordered union of trivial groups, indexed 

by SpecR\{0}. 

3. T h e  g r o u p  c o n s t i t u e n t s  o f  t h e  Cl i f ford s e m i g r o u p  $(R) 

A natural problem arising in our investigation is which abelian groups can be 

group constituents G L of the Clifford semigroup S(R) of a valuation domain 

R, for some prime ideal L of R. Actually, this is a problem on totally ordered 

abelian groups; in fact, it can be formulated as follows: find those abelian groups 

G which are isomorphic to (F/Z)/(F/~), where ~ is a convex subgroup of F and 

(F/Y~) is the completion of the factor group F/Z in the induced order topology. 

Obviously, there is no loss of generality in assuming ~ -- 0, which amounts to 

localizing the valuation domain at the prime ideal L. 

Proposition 5 and Example 3 in the preceding section give a satisfactory answer 

in case F has a minimal non-zero convex subgroup: a group G is isomorphic to 

F/F for some totally ordered abelian group F with a minimal non-zero convex 

subgroup if and only if G is divisible of cardinality _< 2u~ hence, hereafter, we 

will always assume that F has no minimal non-zero convex subgroup. 

Our goal of characterizing abelian groups G which are isomorphic to F / F  for 

some totally ordered abelian group F without a minimal non-zero convex sub- 

group, can be achieved in two different ways. The first one is a c o a r s e  c h a r a c -  

t e r i z a t i o n ,  which considers only the cofinality of the ordered set of the non-zero 

convex subgroups of F; the coarse characterization is obtained in Propositions 7 

and 8 below. The other way is by a f ine c h a r a c t e r i z a t i o n ,  in which the skeleton 

of F is preassigned; we will give a fine characterization for particular skeletons 

only (see Corollary 13), but we are able to obtain various f ine r ea l i za t ion  results 

(see Theorems 11 and 12). 

3.1 THE COARSE CHARACTERIZATION. We deal first with the coarse charac- 

terization. Our problem reduces to one on torsionfree abelian groups, in view of 

the following result essentially due to Simbireva and Neumann (see IF1, Theorem 
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6, page 48]); recall that a convex subgroup of a totally ordered abelian group is 

necessarily pure. 

THEOREM: Let F be a torsionfree abelian group, ~ a cardinal and 

F = F0 _D F1 _~ F2 _D . . .  2 Fo _D... ( a < ~ )  

a well ordered chain of  pure subgroups such that n , < ~  Fa = Fx for all limit 

ordinals A < ~, and N~<~ Fo = O. Then there exists a total order on F such that 

the subgroups Fo are convex subgroups with respect to this order. 

At this point it is useful to introduce the following definition. Given an infinite 

cardinal a, we say that  the abelian group G is ~-realizable if there exists a 

torsionfree abelian group F with a chain of pure subgroups 

r = r o 2 F 1 2 F 2 _ ~ . . . 2 F o _ ~ . . .  ( a < ~ )  

such that G -~ F/F ,  where F denotes the completion of F with respect to the 

topology which has the given chain as a basis of neighborhoods of zero. The 

following result, which is almost trivial, is fundamental for our purposes. 

LEMMA 6: The class of  ~-realizable abelian groups is closed under quotients. 

Proof: Assume G -~ F / F  is ~-realizable and let H ~- F ' /F  be a subgroup of 

G, with F' a subgroup of F containing F. Then G / H  ~- F / F  t, and F is also the 

completion of its dense subgroup F' with respect to the induced topology; hence, 

in view of [O, Proposition 3, page 105], G / H  is ~-realizable. | 

In view of Proposition 5 and Example 3 in the preceding section, we must 

expect different behaviors in the two cases of Ro-realizable groups and ~-realizable 

groups, for ~ an uncountable regular cardinal. 

The next result gives a sufficient condition for g-realizability, which is also 

necessary in the countable case. 

P R O P O S I T I O N  7: A cotorsion group is re-realizable for each infinite regular 

cardinal ~. An  abelian group is Ro-realizable i f  and only i f  it is cotorsion. 

Proof'. If G is cotorsion and reduced then, denoting by D its divisible hull, G 

is a quotient of Homz(Q/Z, D/G) ,  which is a torsionfree algebraically compact 

group (see [F2, 54.1 and 46.1]); hence, by the preceding lemma, it is enough to 

show that a torsionfree algebraically compact group H is a-realizable. Consider 
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any total order on H. There is a pure embedding via the diagonal map of H 

into H'~/H <'r H" is complete in the order topology and H <~ is dense in H ~, 

hence H " / H  <'~ is n-representable; since H is pure injective, it is a summand of 

H'C/H <', hence it is also n-representable, by Lemma 6. The rest of the claim 

follows from Proposition 5. | 

Now we deal with the coarse characterization in the uncountable case. 

PROPOSITION 8: Let ~ be an uncountable regular cardinal. Then the class of  

~-realizable abelian groups coincides with the class of all abelian groups. 

Proof: Since all groups are quotients of free groups, it is enough to show, by 

Lemma 6, that  a free group F is s-realizable. Consider any order on F and 

let F ~ be the lexicographically ordered direct product of n copies of F; let ns 

think of the elements of F ~ as functions from n into F. F ~ is complete with 

respect to the order topology. For every interval I in n and f E F, let fxl  be the 

function assuming the value f for each element of I and 0 elsewhere. Let F be 

the subgroup of F ~ generated by the functions f• for every f E F and every 

interval I of cardinality smaller than ~. It is easy to check that  the closure F of 

F in F ~ coincides with the subgroup of F ~ generated by the functions fx~, where 

f ranges in F and I is an arbitrary interval in n. Clearly F -- F O F ~, where F ~ 

consists of the constant functions. Obviously F ~ -~ F via the diagonal map, thus 

F ~ F / F  is n-representable. | 

Note that  both F and F in the preceding proof are Specker groups over F, 

in the sense defined in IF2, XIII.97]. Clearly every lq0-realizable abelian group 

is n-realizable, for n > R0, and every group R/A,  with A dense in R, is also 

t%-realizable. 

3.2 FINE REALIZATIONS. We are going to recall some basic notions on totally 

ordered abelian groups (see IF1] or [R]). If F is such a group, a convex subgroup 

E of F is p r i n c i p a l  if it has an immediate predecessor under inclusion. Let 

7 ) = 7)(F) denote the set of the principal convex subgroups of F with 0 adjoined, 

ordered by the reverse inclusion. The set C of all the convex subgroups of F is 

exactly the closure of 7) with respect to infima and suprema, hence 7) is char- 

acterized by the property that  its closure is a weakly atomic totally ordered set 

closed under infima and suprema (see [F1, pages 50-53]). It  is worth remarking 

that ,  in order to define a n a t u r a l  v a l u a t i o n  on F (see IF1, page 55]), the total  
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ordering considered on P(F) is the opposite of the one given by the inclusion, 

and that it agrees with the ordering on Id(S(r)). 
We denote by ~,+ the immediate successor of ~ C P with respect to this 

ordering (hence E+ is covered by Y]. under the inclusion). For each E E 7 9 we 

denote by A(~) the factor group E/E+;  note that A(E) is order isomorphic to 

an additive subgroup of • containing ~., hence it has infinite cardinality at most 

2 ~~ We define A(0) = 0. 

A skeleton is a system S = [79; A(Z), E E 79] with 79 a totally ordered set 

with maximum (denoted by 0) whose closure with respect to infima and suprema 

is a weakly atomic set closed under infima and suprema and with A(~) totally 

ordered group isomorphic to an additive subgroup of R containing Z for each ~. 

The skeleton of the totally ordered group F is the system S(F) = [79(F); A(E), Y:. �9 

79(r)]. In this section we will always assume that P ( r )  has no maximal non-zero 

elements, i.e. r has no minimal non-zero convex subgroup. 

Given a skeleton S, we say that the abelian group G is S-real izable  if it is 

isomorphic to F/F,  where r is a totally ordered group with skeleton S. 

Given a skeleton S = [79; A(E), ~ �9 79], the Hahn product on S: H(S) = 

Hr.e:~ A(E), is the subgroup of the direct product 1-Ir.eT~ A(Z) consisting of the 

elements with well ordered support. It is well known that H(S) is totally ordered 

by the lexicographic ordering, and its own skeleton coincides with S. Every 

subgroup of H(S) containing the direct sum ~:)~e~' A(E) has also skeleton S 

(with respect to the induced total ordering). Moreover, it is well known that the 

quotient of the Hahn product modulo every convex subgroup with no immediate 

successor (under inclusion) is complete in the order topology (see JR, Lemma 9]). 

Hence every quotient of H(S) modulo a dense subgroup containing the direct 

sum ~]~eT~ A(E) is S-realizable. 

However, these types of S-realizable groups have in general a special structure; 

for instance, these groups reflect divisibility properties of the groups A(E). More- 

over, if cof(79) = Ro (cof(79) is the regular cardinal given by the cofinality of 79), 

we cannot hope to realize every group, as Proposition 7 indicates. On the other 

hand, if cof(79) > R0, Proposition 8 indicates that we can hope to realize a large 

class of groups. Our strategy is to look at totally ordered groups F satis~ing the 

inclusions 

(a) C r c n .evA(r,); 
~E79 
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then F / F  and all its quotients are S-realizable. In each case we would like to 

obtain S-realizable groups of cardinality as large as possible. 

It is useful at this point to introduce two cardinal invariants of the skeleton S. 

We will call the cardinal numbers 

r  = min(IH~_>AA(E)[: 0 > A �9 7)} and r = min{IP(A)l: 0 > A �9 P} 

final cardinal of  S and final  c a rd ina l  of  7), respectively, where 7)(A) = 

{E E 7): A < E < 0} is the final interval starting at A. The final cardinals 

are connected with the cofinality of 7 ) and the cardinality of S-realizable groups. 

LEMMA 9: I f  S = [ P ; A ( E ) , E  E P] is a skeleton, where 7) has no maximal 

non-zero element, and F is a totally ordered abelian group with skeleton S, then 

(1) 2 c~ ~ r  ~ 2 r 

(2) I /rl <_ r 

Proof'. (1) If A E 7) is sufficiently close to 0, we have 

E>_A 

on the other hand, for each 0 > A E P,  P(A) contains a subset order isomorphic 

to cof(7)), so that HE>_A A(E) contains a subgroup isomorphic to I-Ir z ,  which 

has cardinality 2 r176 

(2) Since F / F  --- H/ I I  for every non-zero convex subgroup II, it is enough to 

show that ,  for some H, ]HI ~_ r There is an embedding of F into H(S* ), 

with S* = [7); A(E)*, E E 7)], where A(E)" is the divisible hull of A(E) (see 

[F1]); now H coincides with F N H~:>nA(E)* and, for H sufficiently close to 

0, IH~>nA(E)*I = r since A(E)* and A(~)  have the same cardinality, we 

can conclude that tIII ~_ r = r | 

We will give now some examples of skeletons and computations of their final 

cardinals. The first two examples show that both 2 c~ < r  = 2 r and 

2 c~ = r  < 2 r are possible. The third example shows that  the equality 

!F/F I = r  can actually happen, even if F / F  is free, hence the upper bound in 

Lemma 9 is the best possible, in general. 

Examples: (1) Consider the skeleton S = [P = wlw; Zo, a E P], where Zo = Z 

for each a. Then cof(P) = 1% and r  = Nt; the Hahn product H(S) coincides 
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with IInewG., where Gn -~ 1-Lew~ Zo for each n. There follows that r  = 

(~o~)~o = 2 ~ ,  = 2 , ( 7 , ) .  

(2) Let $ = [P op = w 1 ~; Zo, a E P], where Zo = Z for each a. Then cof(7 )) = 

R0 and r )) -- R1; H(8) coincides with IInewGn, where Gn ~- E~oew~ zo for 

each n. There follows that r = l~ ~ = 2 s~ = 2 c~ 

(3) Let $ = [7 ) =~z l ;Zo ,a  E 7)],where Z~ = Z for e a c h a .  T h e n H ( $ )  = 

Z w~, hence 0(S) = 2 al. On the other hand, if we consider the subgroup F of 

Z w~ consisting of the functions of finite range and eventually zero, then F is a 

Specker group over Z whose closure in Z wl is the Specker group F consisting of 

the functions of finite range. By Nhbeling's result iN], F / F  is free and it has 

cardinality 2 ~ (see [EM, II.4.9]). 

The argument used in the example (3) above is the core of the more general 

result obtained in Theorem 12 below. We will need the following technical result, 

which generalizes to arbitrary cardinals, for torsionfree groups, a result in [GH]. 

LEMMA 10: Let {Gn}new be a sequence of non-zero torsionfree abelian groups 

such that, for every n E w, ]G. [ >_ 2 ~ and dimG./pGn >_ 2 ~" (~ and ~p are infinite 

cardinals). Then the algebraically compact group G = I-I,~ew Gn/ (~new Gn has 

the divisibIe part of cardinality >_ 2 ~ and, for each prime p, the invariant of its 

reduced p-adic component is >_ 2 ~ .  

Proof" We will use the following: given a sequence (Xn)ne., of sets, each one 

of infinite cardinal a, and the equivalence relation on the cartesian product 

1-I,~ew x .  defined by setting (x,~)ne~ ~ (yn)new if Xn = Yn for almost all n, 

the quotient set 1-Inew X n / ~  has cardinality a ~~ Let ~ be the cardinality of the 

maximal divisible subgroup of G. Denote by zr the canonical epimorphism 

new new new 

then the set r(1-i~ew n!G,~) has cardinality > 2 ~ and it consists of elements 

divisible by every integer, hence 5 _~ 2 ~. Recall now that the invariant of the 

p-adic component of G is the dimension of G/pG as Z(p)-vector space. Since ~p 

is infinite, the cardinality of G,~/pG,~ coincides with its dimension over Z(p) and 

it is _> 2 ~,. Thus it is enough to prove the existence in G/pG of 2 ~ distinct 

elements. For every n E w, let Y~ = {x,~ E Gn: ~/ E 2 ~ }  be a set of 2 ~ 

representatives of a basis of G,~/pG,~; consider the set Y = 1-Inc~, Y'~' Clearly 

[lr(Y)[ = 2~,; moreover two distinct elements r ( y l )  and 7r(y2) are congruent 
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modulo pG if and only if there exists an index no such that  the differences of the 

n-th components yl(n)  - y2(n) are in pG,~ for every n _> no, since 

But this is impossible, by our choice of the elements in Y,, so we are done. | 

First we will give a realization theorem in the case of countable cofinality, for 

groups which must be necessarily cotorsion, by Proposition 5. 

THEOREM 11: Let S = [ P ; A ( E ) , E  E P] be a skeleton such that cof(P) = R0 

and let G be a cotorsion group. Then G is S-realizable in each one of the following 

c a s e s :  

(1) 7 ~ contains a cofinal subset order isomorphic to the ordinal ~w, where ~ is 

an infinite cardinal, and G has cardinality <_ 2~; 

(2) P does not contain a cofinal subset order isomorphic to the ordinal r, xz, 

for any infinite cardinal ~, G has cardinality < 2 ~~ and its reduced p-adic 

components are trivial for a11 primes p such that the groups A(E)  are p- 

divisible for all E in a final interval. 

Proof'. In all cases we will realize the cotorsion group G as F/F ,  where F satisfies 

the inclusions (a). Let G = 1-iv G; @ d(G), where d(G) is the divisible part  of G 

and G v the reduced p-adic component of G. We have an epimorphism 

(b) A = H A p  @ D --~ G 
P 

where Ap = Homz(Z(p~) ,  Dp/Gp), with D~ the divisible hull of Gp and D a 

divisible torsionfree group of the same cardinality as d(G). Each group Av is 

torsionfree algebraically compact  of cardinality at m o s t  [Gp[ ~~ , and it is trivial 

provided Gp is trivial. Hence the cardinal hypothesis on G holds also for A. If 

we realize A as F /F ,  with F and F as in (a), then G ~ F / F ' ,  with F'  containing 

F; then we will be done. 

(1) Let F = F0 < F1 < F2 < . . .  < Fn < . .-  be a cofinal sequence in 

P such that  each interval [Fn, Fn+l] contains a subset order isomorphic to ~. 

Let A be the group in (b), of cardinality <_ 2 ~. Consider the direct prod- 

uct rI , ,e~ ~ ,  with the lexicographic ordering, where ~ = H r . < ~ < r . + I A ( E ) .  

Each group 12n contains a subgroup isomorphic to Z ~, hence it contains a sub- 

group Hn = ( ( ~ r . < ~ < r . + ,  A(E))  ~ Fn, where F~ is a free group of cardinality 
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2~; the existence of such an F,~ follows by simple cardinal considerations. The 

closure of the group ~]~,~e~ Hn in the complete group I-I~6~ fl~ = HEepA(Z)  

coincides with ~ e ~  H,~. Since [H~[ and [H~/pH~[ are both >_ 2 ~, the factor 

group 1-I.e~ H ~ / ~ e ~  H~ has reduced p-adic components whose invariants are 

at least 2 ~ for all primes p, and a divisible part of cardinality at least 2 ~, in view 

of Lemma 10. Hence the algebraically compact group A is a quotient of this 

group. 

(2) Let A be the group in (b) with cardinality <_ 2 ~~ If P does not contain a 

cofinaI subset order isomorphic to ~ for any infinite cardinal ~, then, for each 

cofinal sequence F = Fo < F1 <: F2 < " "  < F~ < . . .  in P,  there exist an no 6 w 

and II sufficiently close to 0 such that 

where ~n = ~ r ~ < ~ < r , + ,  A(E). If, for a fixed prime p, the groups A(E) are 

p-divisible for all V. in a final interval, our hypothesis ensures that Ap = 0. 

Otherwise, there is an infinite set of non-p-divisible groups f/~. Then, by the 

results in [GH], A is a quotient of YI,~e~ ~2,~/~,~e~ ~'~" | 

We will deal now with the fine realizations in the case of cof(T ~) > R0, 

THEOREM 12: Let S = [T~; A(~),  E 6 •] be a skeleton such that cof(P) > R0 

and let G be an abelian group. Then G is S-realizable in each one of the following 

cg~es: 

(1) G has cardinality <_ 2c~ 

(2) P contains a cofinal subset order isomorphic to the ordinal ~cof(P), where 

is an infinite cardinal, and G has cardinality <_ 2~; 

(3) P contains a cofinal chain F = F0 < F1 < F2 < - ' .  < Fo < --. (a 6 

cof(7~)) such that each interval [Fo, ra+x] has infinite cardinality ~ and G 

has cardinality <_ ~2 r176 

Proof'. (1) Let ,7 -~ cof(P) be a well ordered cofinal subset of P.  Since each 

group A(E) contains a copy Z(~)  of Z, we can consider the subgroup FIn6j Z(E) 

of H z e p A ( E  ), which is clearly isomorphic to Z c~ Hence each element of 

Hne,z Z(~)  can be viewed as a function from f l  into Z. Let S be the subgroup of 

YInej  z ( E )  consisting of those functions which have finite range and are even- 

tually zero. S is obviously a Specker group on Z. It is easy to see that  the 
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completion S of S, with respect to the topology induced on S by the order topol- 

ogy on ~ e p A ( E ) ,  is the subgroup of l - [ze j  Z(E) consisting of all functions 

with finite range, which is also a Specker group on Z. By NSbeling's result IN], 

= S ~ F, where F is free. By Corollary 4.9 in [EM, II] and its remark, F has 

cardinality 2 ~~ Consider now the subgroup of ]HIr.e~ A(Z): 

endowed with the total ordering induced by that  on ~:e~,A(F~). The hypothesis 

that cof(P) > Ro ensures that ~]~r~e~ A(Z) is closed in ~2r  We will show 

now that the closure F of F in ~2epA(E)  is the group X = ( ~ z e p  A(E)) + S. 

It is enough to prove that X is closed. Let { x ~  }uer be a Cauchy net of 

elements in X; we must show that its limit is in X. Without loss of generality, 

we can assume that 

xr,. E H~<~ A(Z) n X 

and 

x ~ ( E )  = x ~ ( E )  for every E < E~ < E~. 

Let xr~, = d ~  + s ~ . ,  where d2, E ~ e ~ ' A ( Z )  and s ~  E S. Let Fu be the 

support of d r . .  Now we define a new element d' r., E ~ e T ,  A(Z) in the following 

way: 

d~( r , )  

{ dE , (E) (=  x~:, (E)) 

= z ~  (r~) 

0 

if Z E F ~ \ J ,  

if E E F , [ - / : 7  and x ~ , ( E ) ~ Z ,  

otherwise. 

d' s' where s ~ - Then clearly x ~  = ~ ~- ~ ,  ~, E S has support disjoint from the 

support /~  of d' �9 moreover, if u > #, then F~ C F~. Since cof(~) > ~0, 

there follows that F -- Uucr F~ is a finite subset of 7). By our choice of the 

elements d ~ it is clear that the sequence { d ~  }uecof(P) is a Cauchy net and it 

converges to an element d E ~ A(E) with support F. This implies also that 

{ s ~  }.er is a Cauchy net. hence it converges to an element ~ E S; thus the 

Cauchy net {x2. }uer converges to d + ~ E X. 
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Now the conclusion that F/F is isomorphic to F easily follows from the 

inclusion (~)~ep A(E) r~s  c S; in fact we have: 

F / F =  r A ( ~ ) + ~ / ~  A(~)+S_--- S/Sn ((~ A(~) + S I 
/ 

= n A(~ + S = S/S  ~- F. 

Hence G is S-realizable, since it is an epimorphic image of F. 

(2) There is an ascending cofinal chain in T): F -- F0 < FI < F2 < ... < 

Fo < "" (a E cof(~)), such that, for every o', the interval [Fa, Fa+l] contains a 

subset/Ca order isomorphic to ,r Let us consider, in the subgroup l-[~e*:~ A(E) 

of HEepA(~), a free group Do of rank 2 ~, and the subgroup ~aer i-lo of 

H~e~A(~). Each element of l-Iaecof(p) i2a can be viewed as a function from 

cof(:P) into A -- (~)2~ Z. Let T be the subgroup of l-Iae~of(~,) 12a consisting of 

those functions which have finite range and are eventually zero. T is obviously a 

Specker group on A. Consider the topology induced on T by the order topology 

on H~epA(~); it is easy to see that the completion T of T is the subgroup of 

YIaE~of(~) ~a consisting of all functions with finite range, which is also a Specker 

group on A. By the Kaup and Kean's version of Nbbeling's result [KK], T = 

TOE, where E is a free group with a characteristic A-basis, which has cardinality 

2 ~. Consider now the subgroup of HEepA(~): 

endowed with the total ordering induced by the order of Hr.s~,A(N). Arguments 

similar to those used before show that the closure of F in Hr.E~A(N) is 

and that F/F ~ E = (~)2~ Z. G is clearly an epimorphic image of E, hence it is 

S-realizable. 

(3) In this case the proof is just a small modification of the proof in (2): for 

each interval [Fa, Fa+s] the subgroup ~r~<~.<r~+l A(E) of Hr.e~,A(~) contains 

a subgroup isomorphic to B = (~)~ Z; repeat now the preceding proof with B 
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instead of A, and consider that the analogous group T / T  has cardinality ~2 ~~ 

| 

It is easy to show that a cardinal ~ satisfies: (a) the hypothesis in point (2) of 

Theorem 12 provided that ~ is a regular cardinal strictly larger than cof(P) and 

it is order embeddable in the final interval starting at H, for every FI < 0; (b) the 

hypothesis in point (3) of Theorem 12 provided that the final cardinal r  of P 

is a regular cardinal strictly larger than cof(P). By means of two examples very 

similar to those after Lemma 9, we will show now that point (2) in Theorem 12 

gives a better result than point (3), or vice versa, depending on the structure of 

Examples: (1) Let S = [P = ,~~ A(E) = Z , E  E P]. Then H~EpA(E ) 

l-I~ ( ~  Z), hence r = ~u~; the largest cardinal satisfying the hypothesis in 

point (2) of Theorem 12 is clearly R1, hence that theorem guarantees that free 

groups of rank 2 ~' are S-realizable. On the other hand, the cardinal ~ satisfies 

the hypothesis in point (3) of Theorem 12, hence free groups of rank ~2 u~ are 

S-realizable: a better result if ~ is large. 

(2) Let S = [P = tow1; A(E) = Z ,E  E P], where tr _> 2 ~'. Then H~EpA(E ) ~- 

I-L1 (I-L z ) ,  hence r  = 2~; the cardinal tr satisfies the hypothesis in point (2) 

of Theorem 12, hence that theorem guarantees that free groups of rank 2 ~ are S- 

realizable. On the other hand, the greatest cardinal satisfying the hypothesis in 

point (3) of Theorem 12 is to, hence free groups of rank 1r ~ = tr are S-realizable: 

a worse result. 

We will conclude with the following characterization of S-realizable groups, 

under a particular assumption on the cardinal invariants of P.  

COROLLARY 13: Let S = [ P ; A ( E ) , E  E P] be a skeleton such that 2 r = 

2 ~~ . Then an abelian group G is S-realizable i f  and only if." 

(1) [G[ _< 2 c~ and 

(2) i f  cof(P) = Ro, then G is cotorsion and, in case 7) does not contain a 

cofinal subset order isomorphic to the ordinal Row and the groups A(E) 

are p-divisible in a final interval for some prime p, then the reduced p-adic 

component of  G is trivial. 

Proof'. In view of Proposition 7, Lemma 9 and Theorems 11 and 12, we must 

only prove the necessity in point (2). Let F = Fo < F1 < F2 < . . .  < F ,  < 
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�9 .. be a cofinal sequence in 9;  since 9 does not contain a cofinal subset order 

isomorphic to ~qow, there exists an index no such that  every non-zero element 

in the final interval starting at F,, o has an immediate predecessor (with respect 

to the ordering in 9 )  and does not contain infinite ascending sequences. Now 

we want to show that,  if the groups A(E) in the final interval generated by 

F~o are p-divisible for some prime p, then F~o is p-divisible; this would imply 

that  G = F / F  ~ F~o/r~o is p-divisible, i.e. the reduced p-adic component of 

G is trivial. Since F .  o embeds as a pure subgroup into 1-I~>~o F~o/Fn, it is 

enough to prove that  each quotient group F~ o/F~ if p-divisible. But this is clear, 

since F~ 0/F~ is a union of a well ordered ascending chain (with respect to the 

inclusion) of groups such that  the quotient of each group of the chain modulo 

its immediate predecessor (with respect to the inclusion), if such a predecessor 

exists, is p-divisible. (Note that  the groups indexed by limit ordinals in the well 

ordered chain are non-principal convex subgroups, and hence they are not in 9 . )  

| 
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